

American Institute of Aeronautics and Astronautics

1

Applying Graph Theory to Problems in Air Traffic
Management

Amir H. Farrahi1
Universities Space Research Association, Moffett Field, CA, 94035

Alan T. Goldberg2

Kestrel Institute, Palo Alto CA, 94304

Leonard N. Bagasol3
Universities Space Research Association, Moffett Field, CA, 94035

and

Jaewoo Jung4
NASA Ames Research Center, Moffett Field, CA 94035

Graph theory is used to investigate three different problems arising in air traffic
management. First, using a polynomial reduction from a graph partitioning problem, it is
shown that both the airspace sectorization problem and its incremental counterpart, the sector
combination problem are NP-hard, in general, under several simple workload models.
Second, using a polynomial time reduction from maximum independent set in graphs, it is
shown that for any fixed e, the problem of finding a solution to the minimum delay scheduling
problem in traffic flow management that is guaranteed to be within n1-e of the optimal, where
n is the number of aircraft in the problem instance, is NP-hard. Finally, a problem arising in
precision arrival scheduling is formulated and solved using graph reachability. These results
demonstrate that graph theory provides a powerful framework for modeling, reasoning about,
and devising algorithmic solutions to diverse problems arising in air traffic management.

Nomenclature
Æ = The empty set
ji = A division of the airspace in the constructed ASPD instance for a given PLANAR-P3(6) instance
A = The airspace, which is typically a closed subset of 2- or 3-dimensional Euclidean space
AA = Arrival airport in the constructed SMDS problem instance
AD = Departure airport in the constructed SMDS problem instance
ALG = A polynomial time algorithm for SMDS problem
ALG(I) = The delay associated with the solution resulting from algorithm ALG on instance I of SMDS
ASP = The Airspace Sectorization Problem (optimization version) in DAC
ASPD = The decision version of ASP
ASPMS = Min-sector version of the ASP optimization problem
ASPMW = Min-workload version of the ASP optimization problem
ATC = Air Traffic Control
ATM = Air Traffic Management
cdownj(t) = The capacity of sector downj in the constructed SMDS instance

1 Senior Research Scientist, Universities Space Research Association, NASA Ames Research Center, Moffett Field,
CA 94035, AIAA Member.
2 Research Staff, Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304.
3 Senior Software Engineer, Universities Space Research Association, NASA Ames Research Center, Moffett Field,
CA 94035.
4 Research Engineer, NASA Ames Research Center, Moffett Field, CA 94035, Senior AIAA Member.

https://ntrs.nasa.gov/search.jsp?R=20170011267 2020-05-09T12:40:23+00:00Z

American Institute of Aeronautics and Astronautics

2

ci(t) = The capacity of sector si at time t in the SMDS instance
cs = The upper bound on number of sectors in a feasible solution for an ASPD instance
cupj(t) = The capacity of sector upj in the constructed SMDS instance
cw = The upper bound on the sector workload in a feasible solution for an ASPD instance
dij = The delay assigned to the jth sector along flight fi’s route in the constructed SMDS instance
di = The sequence of delays assigned to flight fi in different sectors along its flight path in the
 constructed SMDS instance
D = The set of delay sequences imposed on the set of flights in the constructed SMDS instance
DAC = Dynamic Airspace Configuration
downi = The lower sector in a sector pair in the constructed instance of SMDS
E = The edge set of a graph
|E| = The size of E (number of edges in E)
F = Set of flights or flight trajectories in ASP, SCP, MDS, SMDS and MSDA problems
fi = The ith flight in ASP, SCP, MDS or MSDA problems
G = A graph
MDS = The Minimum Delay Scheduling problem in traffic flow management
MILP = Mixed Integer Linear Programming
mj (F, si) = Workload model mj, accounting for the workload in sector si due to the set of flights in F
MSDA = Maximum Set of Dependent Aircraft problem in air traffic management
n = Problem size, e.g., the number of flights in the problem instance
OPT(I) = Optimal (smallest) delay of a feasible solution to instance I of SMDS
P = Sector aggregation (partition) function in SCP
pi = The ith partition in P
PNANAR-3DM = Three dimensional matching problem in planar graphs
PLANAR-P3 = The problem of partitioning a planar graph into triangles
PLANAR-P3(6) = A restricted version of PLANAR-P3 in which each vertex is incident on 6 or fewer edges
Rn = n-dimensional Euclidean space
S = The set of sectors in the ASP, SCP, MDS and SMDS
SCP = Sector Combining Problem in DAC
si = The ith sector in ASP, SCP and SMDS problems
SMDS = The simplified version of the MDS problem
spread(D) = The difference between the max and min total delay imposed on different flights in a feasible
 solution to the constructed SMDS instance
t = Time dimension in ASP, SCP, MDS and SMDS
T = The scheduling function in MSDA
TFM = Traffic Flow Management
upi = The upper sector in a sector pair in the constructed instance of SMDS
V = Vertex set of a graph
|V| = The size of V (number of vertices in V)
x, y, z = Spatial dimensions

I. Introduction
odern air transportation systems involve some of the most complex and challenging multi-disciplinary technical
challenges of the age. In recognition of these challenges, a multi-faceted research and development effort is

underway to realize the Next-Generation Air Transportation System (NextGen)
1, intended to accommodate the

projected growth in the demand for air transportation and to achieve increased efficiency in the effective use of the
airspace and Air Traffic Control (ATC) resources. As part of its research and development efforts to help address
NextGen, the National Aeronautics and Space Administration (NASA) is involved in carrying out foundational
research and technology development to extend the state of the art in Air Traffic Management (ATM) using
aeronautics engineering, computer science, software engineering, applied physics, mathematics, human factors, and
automation design2.

Given a nontrivial computational problem that we would like to solve, it is often useful to understand its various
characteristics. One of the fundamental characteristics of a problem is its computational complexity. Understanding
a problem’s computational complexity is an important step in the quest for devising efficient and effective algorithmic
solutions for the problem. Computational complexity is the study of the inherent difficulty of solving problems, and

M

American Institute of Aeronautics and Astronautics

3

provides techniques for relating new problems to the pool of problems that have been characterized before. Graph
theory provides a versatile and powerful mathematical abstraction for expressing, maintaining, testing, qualifying,
quantifying, and reasoning about various characteristics, relationships, hypotheses, and queries among interacting
objects or components comprising a complex system. The versatility of graph theory has enabled its successful
application to a wide variety of technical problems in a multitude of fields in science and technology, from physics to
chemistry to biology, and from manufacturing to transportation to marketing, and beyond.

In this work, we advance the idea that Air Traffic Management (ATM) is ripe with a multitude of complex technical
problems that can be formulated as graph problems. Thus, we argue that the ATM research community can benefit
greatly from the wealth of knowledge and techniques developed in (a) graph theory to solve various graph theoretic
problems, and (b) the theory of computational complexity that is devoted to studying and classifying computational
problems according to their inherent difficulty.

To illustrate this, we use graph theory to investigate three different problems arising in ATM. First, it is shown
that the Airspace Sectorization Problem and the related Sector Combination Problem to optimize the airspace and the
ATC resources are NP-hard, in general under several simple workload models. This is done by establishing a
polynomial reduction from an NP-hard graph partitioning problem. Second, it is shown that for any fixed e > 0, the
problem of finding a feasible scheduling solution to the traffic flow management problem with n aircraft in the problem
instance, that is guaranteed to be within n1-e of the optimal solution is NP-hard. This is done by establishing a
polynomial time reduction from the maximum independent set problem in graphs that is also known not to be
approximable. Finally, a problem arising in precision arrival scheduling is formulated and solved using graph
reachability. While the results of our investigation in each of these problems is useful on its own merits, the unifying
theme and the underlying purpose of presenting them in this work has been i) to invite the ATM research and
development community to familiarize itself better with graph theoretic ideas and the theory of computational
complexity, and ii) to provide examples illustrating how this can lead to new insights and/or efficient algorithmic
solutions for problems arising in ATM.

Basic familiarity with key concepts and notation in graph theory3, 4 and the theory of computational complexity5, 6
is assumed. A refresher on these concepts, sufficient for understanding the material in this paper, is provided in the
appendix. The reader is encouraged to consult references for more detailed and thorough discussion on these subjects.
The rest of this paper is organized as follows. Sections II, III, and IV each focuses on one of the three ATM problems
that were investigated and present the corresponding results. The paper continues in section V with additional remarks
and discussion on some of the underlying purposes and unifying themes of this work, and some suggestions on why,
when, and how to make better use of graph theory and the theory of computational complexity in tackling ATM
problems. The paper concludes with section VI which provides a summary of the technical contributions and lists
some related open problems.

II. Airspace Sectorization Problem
Dynamic Airspace Configuration (DAC)7,8 is a NextGen technical area primarily concerned with optimal strategic

organization and dynamic tactical reallocation of the airspace and ATC resources. The Airspace Sectorization
Problem (ASP) 9-17 is the problem of partitioning the airspace into sectors in such a way as to minimize or balance the
controller workload in each sector by allowing sufficient room in the airspace for the controllers to handle and
accommodate planned activities and unplanned disturbances (such as flight schedule changes, bad weather conditions,
etc.) in a safe and timely fashion. Researchers and practitioners have introduced metrics such as sector capacity15,
monitor alert parameter18-19, dynamic density20-22, simplified dynamic density16, and have used these to monitor,
measure and analyze the workload and/or to compare the result of different airspace sectorization algorithms. Basu,
Mitchell and Sabhnany15 showed that under a specific workload model, ASP is NP-hard if the sector boundaries are
constrained to axis-aligned rectangles. We extend their result to arbitrary shape sectors and under additional workload
models, even if the flight trajectories or their projection onto the two-dimensional plane is a planar graph with
maximum vertex degree six.

A. Problem Formulation
In general, ASP can be formulated in the n-dimensional Euclidean space Rn. In practice, we are typically working

either in R3 (x, y, t) or R4 (x, y, z, t), where x, y, z represent the spatial dimensions and t represents time. In the rest of
the paper, we will use R3 for simplicity and will generalize the results to higher dimensions as appropriate. The
problem instance includes the airspace A, which is a closed sub-space of R2 (x, y), and a set F of flight trajectories
inside A, where each trajectory is a curve in R3 (x, y, t) signifying the prescribed path traveled by an aircraft in the
space-time. Generally, two flavors of the problems are of interest: min-workload (ASPMW) and min-sector (ASPMS).

American Institute of Aeronautics and Astronautics

4

In both the min-workload and the min-sector formulations, the exact definition of the workload function depends on
the workload model or workload metric being used. Some simple examples of workload model include:

 m1 (F, si) = Total # of flights that intersect si (1)
 m2 (F, si) = # of flights simultaneously present in si (2)
 m3 (F, si) = # of flights present in any time interval of fixed duration d in si (3)
 m4 (F, si) = Total # of intersections between the boundary of sector si and the flight trajectories in F (4)
 m5 (F, si) = a.m1 (F, si) + b.m4 (F, si) (linear combinations of workload models m1 and m4) (5)

More complicated workload models can be formed. As an example, the workload model m5 (F, si) above, is defined
as a linear combination of m1 (F, si) and m4(F, si) to account for both the workload associated with safe separation of
flights inside the sector (m1 (F, si)) as well as the coordination workload associated with flights crossing the sector
boundary (m4 (F, si)). Other examples of more sophisticated characteristics used to define workload can be found in
the literature for dynamic density metric20-22. We can combine the min-workload and min-sector formulation into one
decision problem, denoted ASPD(m), with an instance (A, F, cs, cw), where m represents the workload model. The
problem seeks to determine whether there exists a sectorization of the airspace A into cs or fewer sectors such that the
workload for each sector (under the workload model m) is no more than cw. An airspace sectorization is called feasible
(or cw-feasible) if it meets the maximum workload constraint. Therefore, in the ASPD(m) problem, we seek to
determine if there exists a cw-feasible sectorization of the airspace into cs or fewer sectors. This problem relaxes into
its min-sector or min-workload versions if the maximum workload or the maximum sector count constraining factor
is missing (e.g., set to infinity), respectively, while the objective is to minimize the remaining factor.

B. Previously Known Results on the Computational Complexity of ASP
Basu, Mitchell and Sabhnany15, used sector capacity as workload metric, which they defined as the number of

aircraft present simultaneously in a sector (equivalent to m2(F, si) defined in Eq. (1).) They showed the following:

15Theorem 1. The 2D version of ASPMS(m2) can be solved exactly in worst-case (deterministic) time O(kn log2n),

where k is the optimal number of sectors in the problem instance and n is the number of flight trajectories in the
problem instance. The problem can be solved in O(kn log n) expected time using a randomized algorithm.

15Theorem 2. The 2D version of ASPMW(m2) can be solved exactly in worst-case (deterministic) time O(kn log3n).

The problem can be solved in O(kn log2n) expected time using a randomized algorithm.

15Theorem 3. The 3D version of ASPMS(m2) and ASPMW(m2) are NP-hard if we restrict the solution space to those

sectorizations in which each sector is an axis-aligned rectangle.

In general, restricting the solution space of a problem can have different impacts. It can turn an easy problem into

one that is intractable, or it can turn an intractable problem into one that can be solved optimally in deterministic
polynomial time, or it might not change the computational complexity class of the problem. This might be somewhat
counter-intuitive. It may seem that a restriction resulting in a drastic reduction on the size of the solution space would
make the problem easier to solve. This s not necessarily the case, because the inherent difficulty of a problem is
generally determined by the interaction of several factors, including the size, form and the structure of the solution
space, as well as whether and how the problem characteristics may be used to navigate the solution space to home-in
on an optimal solution. Since it is not clear how the axis-aligned restriction on the shape of the sectors would impact
the computational complexity of the airspace sectorization problem, one cannot readily assume that the sectorization
problem under workload model m2 remains NP-hard in three or more dimensions, in general, if the restricted version
is NP-hard.

C. Our Results on the Computational Complexity of ASP
In this section, we investigate the computational complexity of ASPD, in general, for the workload models defined

in Eqs. (1) through (5), when the sectors are allowed to take arbitrary shapes and orientations and thus are not required
to be axis-aligned rectangles. We show that under most of these workload models, the problem is NP-complete.

To prove ASPD is NP-complete under a given workload model, we establish a polynomial time reduction from
PLANAR-P3(6), which is a restricted form of Planar 3-Dimensional Matching23 (PLANAR-3DM). Under this
restriction, each vertex in the planar graph constituting the problem instance is connected to no more than six other

American Institute of Aeronautics and Astronautics

5

vertices. Establishing this reduction essentially proves that ASPD has immense expressive power. In essence, this
proves that ASPD can express an arbitrary problem in NP, even the hardest ones among them. This shows solving
ASPD in polynomial time is tantamount to solving an arbitrary problem in NP in polynomial time, thus proving that
under the given workload model, ASPD is NP-complete, and hence the optimization versions of the problem (ASPMS
and ASPMW) are NP-hard.

In PLANAR-P3(6), given a planar graph G = (V, E) with maximum edge degree six, we seek to determine if there
exists a proper partition of V into subsets V1, V2, . . ., Vn such that "iÎ{1, 2, …, n}, GVi, the subgraph induced by Vi,
forms a triangle. That is, GVi is a graph with three vertices, where each vertex is connected to the other two. Dyer and
Frieze23 showed among other things that PLANAR-P3(6) is NP-complete. It is clear that an instance G=(V, E) of
PLANAR-P3(6) is trivially solvable with a NO answer, if the number of vertices in V is not a multiple of 3. So, the
hard instances of PLANAR-P3(6) are among those wherein the number of vertices is a multiple of 3, that is |V|=3n for
some positive integer n.

Let G = (V, E) be an arbitrary instance of PLANAR-P3(6) wherein n = | V | / 3 is an integer. Construct an instance

I = (A, F, cs, cw) of ASPD(m1) as follows (see Fig. 1):

1) A: Since G is planar, it can be embedded in the plane such that there are no edge intersections (except at the

vertices incident on the edges). Consider a planar embedding of G = (V, E) as shown in Fig. 1(a). Create
another planar graph G ¢, which we will call the adjoint graph of G. The new planar graph G ¢ is obtained
from G by expanding each vertex vÎV into a face jv in G ¢ such that two faces ju, jv share an edge in G ¢ if
and only if their corresponding vertices in V share and edge, that is, (u, v) Î E. An example of going from
graph G to the adjoint graph G ¢ is shown in Fig. 1. The area captured by the faces of the adjoint graph G ¢
forms the airspace A in our ASPD(m1) instance.

2) F: To begin with, let F=Æ. Then proceed as follows:
i. For each edge e=(u, v) in E, create a flight trajectory fe that is completely contained inside the faces ju

and jv, originates at u, and terminates at v. Let F = F È fe. The flight trajectories created in this step
are referred to as the edge-flight trajectories. Fig. 1(c) demonstrates this step, given the PLANAR-
P3(6) instance of Fig. 1(a).

(b) Adjoint dual graph G¢

(a) Given instance G = (V, E) of PLANAR-P3(6)

Face

jv5

Face

jv1

v6

v2

v3

v1

v5

v4

v6

v2

v3

v1

v5

v4

(c) Edge flight trajectories added in step 2.i
 are shown in dark using thick lines

(d) Complementary flight trajectories added in step
 2.ii are shown in dark using thick lines

Figure 1. Construction of the ASPD(m1) instance from given PLANAR-P3(6) instance.

American Institute of Aeronautics and Astronautics

6

ii. Note that, by definition, each vertex vÎV in the given PLANAR-P3(6) instance is connected to no more
than 6 edges. This means that the number of flight trajectories created in step (i) above that intersect
(originate or terminate at) a vertex vÎV is at most 6. However, some vertices might connect to fewer
than 6 edges. We would like to ensure additional flight trajectories are created per vertex (as needed),
so that we have exactly 6 flight trajectories (including those generated in step i) originating or
terminating at each of the vertices vÎV. Therefore, for each vertex vÎV that is connected to j edges
with j < 6, we will create an additional (6 – j) flight trajectories. These flights originate at vertex v and
terminate at some location inside the corresponding face jv. Let’s call these the complementary flight
trajectories for vertex v, and denote them as fc1(v), . . ., fc6 – j(v). Extend F by adding these flight
trajectories to it. That is, let: F = F È { fc1(v). . ., fc6 – j(v)}. Fig. 1(d) demonstrates the complementary
flight trajectories created in this step for the PLANAR-P3(6) instance shown in Fig. 1(a).

3) Let cs = n and cw = 15. We have thus completed constructing the ASPD(m1) instance I = (A, F, cs, cw).

We will show that the answer to the given instance G=(V, E) of PLANAR-P3(6) instance is YES if and only if the

answer to the constructed instance I = (A, F, cs, cw) of ASPD(m1) is YES. In other words:

Lemma 4. In the PLANAR-P3(6) instance G=(V, E), the vertex set V can be partitioned into V1, V2, . . ., Vn such

that GVi, the subgraph induced by Vi, forms a triangle if and only if in the constructed instance I = (A, F, cs, cw) of
ASPD(m1), the airspace A can be partitioned into cs=n sectors each with workload no more than cw =15.

Proof: (IF): Assume there exists a partition V1, V2, …, Vn of the vertex set V such that i Î {1, 2, …, n}, |Vi | = 3,

and GVi, the subgraph induced by vertices in Vi, forms a triangle. Let S = {s1, s2, ..., sn}, with si = ji1 È ji2 È ji3, where
jij is the face in the adjoint graph G¢ containing vertex vij. Note that at this point, the union of the sectors in S covers
all of A. Note that si = ji1 È ji2 È ji3 is a contiguous sector in the airspace A since G and G¢ are both planar graphs,
and GVi forms a triangle. Furthermore, for j Î {1, 2, 3}, each of the faces jij intersects exactly 6 flight trajectories.
These are the flight trajectories originating or terminating at vertex vij. However, since vi1, vi2, vi3 form a triangle, there
is one flight that is shared between each pair of these vertices. In other words, each of the sectors si defined above
intersects no more than (6-1)´3 =15 flight trajectories. Thus, S = {s1, s2, ..., sn} is a feasible sectorization of the
airspace with exactly cs = n sectors, where each sector has workload cw =15 under workload model m1. Thus, the
answer to the constructed instance I = (A, F, cs, cw) of ASPD(m1) is YES.

(ONLY IF): Conversely, assume there exists a contiguous partitioning S={s1, s2, ...} of the airspace A into n or
fewer sectors such that each sector intersects no more than 15 flight trajectories in F. It is easy to see that the only
way this can happen is for each sector to contain exactly three vertices that are pairwise connected in G, thus
collectively contributing a total of exactly 15 to the workload of the sector. Take any sector si Î S. Let vi1, vi2, vi3
denote the three vertices in si, and let Vi ={ vi1, vi2, vi3}. It is clear that GVi is a triangle, meaning each pair of the three
vertices in Vi is connected by an edge in E. In other words, the answer to the PLANAR-P3(6) on instance G=(V,E) is
YES. g

Lemma 4 proves ASPD(m1) is NP-complete, in general in three dimensions. To extend the result to higher

dimensions, we note that the 3-dimensional (3D) version of the airspace sectorization problem is a restricted case of
the 4D and above, in the sense that each 3D instance can also be considered a 4D, 5D, … instance with the values of
the parameters along all entities at dimensions four or above are set to zero. Therefore, the ASPD(m1) problem is NP-
complete in any dimension higher than three as well. In other words:

Corollary 5. ASPD(m1) is NP-complete, in general in three or more dimensions.

Note that at no time in the proof of Lemma 4 did we use the flight time spans or durations. It is straightforward to

see that by setting the flight time spans appropriately, we can extend the proof of Lemma 4 to workload models m2,
m3, defined in Eqs. (2), (3). Also, note that the construction presented in the proof can be done in such a way that the
flight trajectories in the problem instance do not intersect one another at any point other than at their origin and
termination points. This is because the vertices in the adjoint graph could be considered area objects as opposed to
point objects, without posing any problems in the proof; thus, we have the following:

American Institute of Aeronautics and Astronautics

7

Corollary 6. The ASPD(m) remains NP-complete under the workload models m1, m2, m3, defined in Eqs. (1), (2),
(3), even when the flight trajectories (or their projection onto the two-dimensional plane) form a plane graph of
maximum vertex degree six.

Earlier, we noted that more complicated workload models can be formed by combining simpler workload models,

and provided as an example m5, defined in Eq. (5), as a linear combination of m1 and m4 , where constant factors a and
b were used for setting the relative contribution of m1 and m4 (corresponding to the workload internal to the sector and
the workload due to coordination effort of aircraft transitioning from one sector to another) to the overall workload
m5. Note that if b is set to zero, then the workload model m5 would be effectively equivalent to m1. This, together with
Corollary 4 shows the following:

Theorem 7. The problems ASPD(m1), ASPD(m2), ASPD(m3) and ASPD(m5) (wherein m1 , m2, m3 and m5 are the

workload models defined in Eqs. (1), (2), (3), and (5) respectively) in three or more dimensions are NP-complete
even when the flight trajectories (or their projection onto the two-dimensional plane) form a planar graph of maximum
vertex degree six.

Note that Theorem 7 does not say anything about the difficulty of workload model m4, defined in Eq. 4. Under

this model, the workload for a sector is defined as the total number of intersections between flight trajectories and the
boundary of the sector. This quantity can be thought of as the coordination workload between a sector and the adjacent
sectors when aircraft are exiting one sector and entering an adjacent one. However, it is easy to see that a trivial
solution to the airspace sectorization problem under this workload model is YES wherein the sectorization consists of
a single sector encompassing the whole airspace with zero workload for the sector, unless of course cs<1 or cw<0, in
which case there exists no sectorization meeting the constraints, and the answer would be NO. In other words:

Observation 8. ASPD(m4) is in P and is trivially solvable.

Theorem 7 shows that unless P =NP, finding optimal solutions to ASP under workload models m1, m2, m3, and

m5 is prohibitively difficult, even if the flight trajectories or their projections onto the 2-dimensional plane seem
reasonably simple (form a planar graph of maximum vertex degree six).

D. Sector Combination Problem
ASP can be thought of as a clean-sheet approach to the DAC, in the sense that it disposes of the current

sectorization in favor of another one that is being computed from scratch. In addition to the fact that finding an optimal
sectorization seems prohibitively expensive, there is the problem of safe transition from the current sectorization to
another one that may be computed when solving ASP, which could be drastically different from the current
sectorization result. Such an abrupt change in the sectorization solution may have unexpected consequences and pose
safety risks. In the absence of a robust strategy that guarantees safe and smooth transition between the current
sectorization and one resulting from solving ASP, a more incremental approach is desirable. One such strategy is the
Sector Combining Problem (SCP) proposed and studied by Bloem and Kopardekar23, Bloem, Gupta and Kopardekar24,
and Drew26. They proposed heuristic and greedy algorithms for the problem, without providing guarantees on the
quality of the results obtained. In the SCP, the current sectorization undergoes local adjustments consisting of
combining neighboring sectors to find another sectorization that makes better use of the ATC resources. The goal is
to do this intelligently so as to minimize the number of remaining sectors, while ensuring that the workload in the
resulting sector does not violate the maximum workload constraint. These earlier research, however, left open the
discussion about the computational complexity of the problem, a question that we will address in this section.

Again, both optimization and decision versions of the problem can be formulated. Here, we formulate the decision
version to study its computational complexity. Formally, an instance SCPD(m), where m is the workload model, is a
tuple (A, S, F, cs, cw), where A is the airspace partitioned into n sectors s1, s2, . . ., sn forming S = {s1, s2, …, sn}, F is
the set of flight trajectories, and cs and cw are constants. A sector aggregation is a partition P = {p1, p2, …, pk} of S
such that if sectors si, sj are in partition pk then there is a path (or a set of neighboring sectors) from si to sj within pk.
The workload model m associates a workload m(F, pi) with partition pi. We seek to determine whether there exists an
aggregation function P = {p1, p2, …, pk} with k £ cs such that for all i, we have m(F, pi) £ cw. We can show the
following:

American Institute of Aeronautics and Astronautics

8

Theorem 9. The problems SCPD(m1), SCPD(m2), SCPD(m3) and SCPD(m5) (wherein m1 , m2, m3 and m5 are the
workload models defined in Eqs. (1), (2), (3), and (5) respectively) in three or more dimensions are NP-complete
even when the flight trajectories (or their projection onto the two-dimensional plane) form a planar graph of maximum
vertex degree six.

The proof is very similar to that presented for the NP-completeness of ASP, and is based on reduction from

PLANAR-P3(6), hence we simply provide the main idea of the proof. Consider a planar graph G=(V, E), as the
PLANAR-P3(6) instance given, and assume without loss of generality that |V| = 3. Consider an airspace A consisting
of the unit square. Let R be an arbitrary partition of A that is consistent with G. That is, A is subdivided into |V|
regions r1, r2, …, rn such that ri is adjacent to rj if and only if (vi, vj) Î E. The correspondence between graph G and
airspace A here is just like what was discussed for ASP and illustrated in Fig. 1(a), 1(b). The rest of the proof parallels
what was presented for ASP.

III. Minimum Delay Scheduling in Traffic Flow Management
Traffic Flow Management27-33 (TFM) is concerned with choreographing the flow of air traffic across the national

airspace system (NAS) based on demand and available capacity. It consists of a number of strategic programs and
practices conducted by the Federal Aviation Administration (FAA) to ensure safety, while at the same time trying to
minimize the costs associated with delays incurred. Fig. 2 provides a notional illustration of aircraft flying through
the NAS, passing through different centers, each of which comprising of a number of sectors along the designated
flight paths of the aircraft. The Minimum Delay Scheduling (MDS) problem in TFM involves introducing strategic
delays on the ground or en-route in order to meet i) the airport arrival and departure rates and ii) the capacity constraints
in the sectors across the airspace, at all times. The MDS problem studied here is modeled after what was presented
by Betrsimas and Stock-Patterson28. They presented a Mixed Integer Linear Programming (MILP) formulation for
the problem and showed that the problem is NP-hard. Landry el al.30 developed a system comprised of a distributed
network of loosely coupled schedulers sharing capacity information, thus creating increased tolerance against
uncertainties involved in estimating arrival times over long distances, while still allowing the construction of short-
term schedules. Tandale et al.31 developed a simplex-based Dantzig-Wolfe decomposition based on the MILP
formulation of the problem, thus allowing a massively parallelizable solution strategy for the problem. Barnhart et
al.32 developed a fairness metric to balance equity and efficiency and developed an integer programming formulation
targeting the minimization of this fairness metric. Zhang el at.33 used an integer quadratic programming formulation
that was first relaxed and solved as a quadratic programming problem by a distributed approach, followed by a
heuristic forward-backward propagation phase to discretize the solution and obtain a solution to the original integer
quadratic programming problem.

Figure 2. Notional illustration of aircraft flying along their designated paths across the NAS.

American Institute of Aeronautics and Astronautics

9

While the MDS problem is known to be NP-hard, it is not clear whether on may be able to devise a worst-case
polynomial time algorithms for the problem that while not guarantee finding an optimal solution, will find solutions
that are guaranteed to be within reasonable approximation of the optimal. This is a problem that we address in this
paper, showing that it is not possible to devise such an algorithm that guarantees a reasonable approximation of the
optimal solution, unless P=NP.

A. Problem Formulation
Informally, the MDS problem in TFM consists of a set F of flights, where flight must fly a designated route through

the airspace. S is the collection of sectors sub-dividing the airspace A, and each flight must spend a designated
minimum transit time in each sector along its path. Thus, each flight departs its designated airport, traverses a sequence
of sectors, spending a minimum transit time in each sector, and then arrives at its designated arrival airport. Each
airport has a time-varying arrival- and departure-rate constraint. Each sector has a time-varying capacity that
constrains the number of flights simultaneously present in the sector. At no time t may the number of flights in the
sector exceed its capacity. Flights may be delayed at the departure airport or in a sector as a means of avoiding the
violation of the airport arrival or departure rates or sector capacity constraints. The objective of the problem is to find
the minimal total delay required so that each flight flies its designated route without violating any airport arrival or
departure rate or any sector capacity constraint.

Our focus in this paper is on a simplified version of the MDS problem denoted as Simplified Minimum Delay
Scheduling (SMDS). This simplified version is sufficient for establishing our computational complexity result, and
yet our result generalizes immediately to the more general problem. In this simplified version, all flights depart from
the same departure airport and all flights arrive at the same arrival airport. In addition, there are no arrival and
departure rate constraints at the arrival and departure airport.

More formally, the SMDS problem consists of a departure airport AD, an arrival airport AA, and a finite set S = {s1,
s2, …, sn} of sectors. Time values are integral (integer values) and in the range [0, T]. For each sector si a capacity
schedule ci : [0, T] ® N is given. Each flight is ready to depart from AD at time 0, and must arrive at AA prior to T. F
= {f1, f2, …, fn} is the set of flights to be scheduled, and for each flight fi, its schedule si = [(si1, t1), (si2, t2), . . ., (sin, tn)]
is a sequence of pairs, where the first element in each pair (sij) denotes a sector and the second element (tj) denotes the
transit time of the flight in the sector. Let usagei(t) = |{f Î F : f is in sector si at time t}. Then, the capacity constraint
can be expressed as usagei(t) £ ci(t). A solution to an SMDS instance is a set D = {d1, d2, …, dn}, wherein di = [d0i,
d1i, . . ., dki] denotes the delays assigned to flight fi along its path, where d0i is the delay at the departure airport and dji
is the delay incurred in the jth sector along the path of the flight. A solution is feasible if no sector capacity constraint
is violated and each flight arrives at the arrival airport AA no later than T. That is, for each flight the sum of the delays
and transit times along its path should not exceed T. The total delay of a solution D = {d1, d2, …, dn} is defined as
delay(D) = SdiÎD delay(di), where delay(di) = Sj={1, 2, …, ki}dij is the total delay assigned to flight fi. including its delay
at the departure and all the sectors along its path. The objective in the SMDS problem is to find the feasible scheduling
solution that has the minimal delay(D). An additional concern may be the notion of equity in treating different aircraft
in the problem instance. Towards that end, we may wish to limit the maximum difference between total delay imposed
on different aircraft. That is, to ensure spread(D) £ K, where spread(D) = maxdiÎD(delay(di)) - mindiÎD(delay(di)), and
K is a given quantity.

B. Our Result on the Computational Complexity of MDS
Since MDS is known to be NP-hard28, developing an efficient (worst-case polynomial time) algorithm for MDS

that finds the optimal solution is out of the question, unless P=NP. There are NP-hard problems for which one can
find reasonable approximations to the optimal solution in worst-case polynomial time. In this section, we prove that
unless P=NP, there is no good approximation algorithm for MDS. We prove this result for the simplified version of
the MDS, defined in the previous section (SMDS). The non-approximability result generalizes immediately to the
more general MDS problem.

Let I be an SMDS instance and OPT(I) be the delay of an optimal feasible solution. Let ALG be any polynomial
time algorithm for SMDS and ALG(I) the delay associated with the solution computed by ALG(I). One might hope
to find an algorithm ALG such that ALG(I) £ k ´ OPT(I) for some constant k. Such approximation algorithms exist
for other NP-hard problems such as the knapsack problem34, Traveling Salesman problem with triangle inquality35,
and the Euclidean Traveling Salesman problem36. We prove, however, that such an algorithm does not exist for
SMDS, even for arbitrarily large values of k, unless P=NP. More precisely, we say ALG is an f(n) approximation

American Institute of Aeronautics and Astronautics

10

algorithm for SMDS if, for an arbitrary instance of SMDS with n flights, we have ALG(I) £ f(n) ´ OPT(I). In this
section, we prove that no polynomial time f(n) approximation algorithms exist for SMDS, where f(n) is of the form
f(n) = n1-e.

We prove this result by establishing a polynomial time reduction from graph Maximum Independent Set (MIS)
problem to SMDS. Given a graph G=(V, E), the MIS problem seeks to find the largest subset W of V such that none
of the vertices in W is connected by an edge in E. In other words: " u, v Î W: (u, v) Ï E. Since it is known that MIS
is not approximable37 to within n1-e for e > 0, our result would follow. The reduction given preserves approximability
in the strong sense. If a graph with n nodes has a maximum independent set of size m, then the reduction constructs
an instance of SMDS with n flights and minimum delay n-m.

Given an instance G=(V, E) of MIS, we construct an instance of SMDS as follows (see Fig. 3):
• For each vertex vi Î V, create a flight fi Î F.
• For each edge ej Î E, create two sectors upj and downj in S and set their capacities as follows:

o cupj (t) = ¥
o cdownj (t) = 1 ; if t = j

 = 2 ; otherwise

Figure 3. (a) Airspace geometry in the constructed SMDS instance, (b) Given MIS instance, (c) Constructed
SMDS instance for given MIS instance.

Arrival
Airport

AA

Departure
Airport

AD

up1 up2 up3 upn

down1 down2 down3 downn

(a)

v1 v2
v3

v4

e1
e2

e3
e4

(b)

Flight schedules (minimum transit times):

f1: s 1 = [(down1, 1), (up2, 1), (up3, 1), (up4, 1)]
f2: s 2 = [(down1, 1), (down2, 1), (down3, 1), (up4, 1)]
f3: s 3 = [(up1, 1), (down2, 1), (up3, 1), (down4, 1)]
f4: s 4 = [(up1, 1), (up2, 1), (down3, 1), (down4, 1)]

Sector capacities:

cup1(t) = cup2(t) = cup3(t) = cup4(t) = ¥

t
1 2 3 4 5 6 7 8 9

1
2

t
1 2 3 4 5 6 7 8 9

1
2

t
1 2 3 4 5 6 7 8 9

1
2

t
1 2 3 4 5 6 7 8 9

1
2

cdown1(t)

cdown4(t)

cdown2(t)

cdown3(t)

(c)

down1
down2

down3

up1 up2
up3

down4

up4

AA AD

American Institute of Aeronautics and Astronautics

11

• For each flight fi Î F (corresponding to vertex vi Î V) its schedule is si = [(s1, 1), (s2, 1), …, (sn, 1)],
where:

o sj = downj ; if the edge ej is incident on vertex vi
 = upj ; otherwise

Intuitively, think of the airspace as a rectangular area decomposed into sectors as illustrated in Fig. 3(a). Note that
each flight traverses the airspace from left to right, spending one unit of time in each vertical strip consisting of the
union of two sectors upj and downj. The upper sector upj of a strip has sufficient capacity so that all flights can be
accommodated simultaneously. Recall that each strip corresponds to an edge in the graph and each vertex to a flight.
The two flights fu, fv corresponding to vertices that are connected to the jth edge ej = (u, v) must fly through the lower
sector downj in the corresponding strip. This sector has capacity 1 at time j. Thus, if neither flight is delayed prior to
entering downj, there will be a capacity constraint violation. However, if either or both of the flights are delayed prior
to entering the sector, there will not be a capacity constraint violation. To illustrate the full construction, a simple
instance G = (V, E) of MIS and the corresponding SMDS instance constructed for it are shown in Fig. 3(b), 3(c),
respectively. The vertices in the MIS instance shown in Fig 3(b) are color-coded, as are the notional paths of their
corresponding flights in the constructed SMDS instance shown with dotted lines at the top of Fig. 3(c) on the left-
hand side; the minimum transit times for these flights are shown at the top of Fig. 3(c) on the right-hand side.

Since the capacity of the upper sectors (up1, up2, . . ., upn) is set to infinity, the only capacity constraints that we
need to worry about are those involving the lower sectors (down1, down2, . . ., downn). As illustrated in Fig. 3 (c), for
each sector downj, corresponding to an edge ej = (u, v) of the given MIS instance, the only two flights entering the
sector are fu, fv, which are those corresponding to vertices u, v incident on ej. Since the vertical strips consisting of an
upper sector and a lower sector are visited sequentially, with each strip taking one time unit to traverse, and the
capacity of downj drops for one time unit from 2 to 1 at time t = j, it follows that if either or both of the flights fu and
fv are delayed at least one unit of time before they pass through downj, then their passage through downj will not violate
the sector capacity, which would be 2, whether they enter downj simultaneously or not. If, on the other hand, neither
fu nor fv is delayed prior to their arrival into sector downj (at time t = j), then their entrance into sector downj would
violate the sector capacity cdownj(t)=1. Moreover, we can show the following:

Lemma 10. In any optimal scheduling solution, of the constructed SMDS instance, each flight is delayed by at most

one unit of time.

Proof: Consider a solution in which flight f is delayed by more than one time unit. We claim that the delay can

be reduced to exactly one, without violating the sector capacity constraints. The reason is that for any flight, once it
is delayed by one unit (or more) prior to its departure, the capacity for each of the sectors that it ever enters exceeds
the number of flights flying through the sector. This is because once we delay a flight by one unit at its departure, all
the down sectors that it ever enters would have capacity 2 during the flight’s presence in the down sector, essentially
imposing no constraints, since the remaining flight that traverses the down sector can also be there, without violating
the down sector’s capacity. Since a delay of one unit would suffice, there is no need to ever have a delay or more than
one unit, and hence, in a delay optimal solution, each flight is delayed by at most one unit of time. g

Theorem 11. Let G = (V, E) be an instance of MIS and I be the constructed SMDS instance. Then the largest

independent set of G has m vertices if and only if the minimal delay schedule for I has a delay d=|V|- m.

Proof: Assume W is a maximal independent set of G with m vertices. We construct a feasible solution of I with

delay |V| - m. The solution imposes a one unit of time delay before the departure on each flight that corresponds to a
vertex in V - W. It is easy to see that this solution is feasible, because for any edge in e = (u, v) Î E, since the two
vertices u, v are connected by an edge, they cannot both belong to the maximum independent set W, and hence at least
one of the two vertices u, v must be a member of V - W. Since all flights that correspond to a vertex in V - W are
delayed by one time unit prior to their departure, it means that all the down sectors are going to have their capacity
meet or exceed the demand. Hence the schedule is feasible. To prove optimality, suppose that there exists a schedule
to the SMDS instance with delay d¢ with d¢ < d. From the optimality of the solution, and Lemma 10, it must be that
exactly d¢ flights are delayed, each by one time unit, while the rest of the flights are not delayed. Let W ¢ be the set of
undelayed flights. It is easy to see that W ¢ would be an independent set for G, with more vertices than W. But this
cannot be the case, since we assumed W to be the maximal independent set.

Conversely, assume that the optimal feasible schedule for I has total delay d. We wish to show that the optimal
solution to the MIS problem has size |V| - d. This must be the case, since otherwise, based on the previous argument,

American Institute of Aeronautics and Astronautics

12

if the MIS problem has a larger independent set, then we could construct a feasible schedule for the SMDS instance
with smaller delay than d. g

Since it is known41 that MIS is not approximable to within n1-e for e > 0, unless P=NP, it immediately follows
that neither can SMDS. In addition, as it is shown, the optimal schedule for the constructed instance I of SMDS can
take the delay for each delayed flight prior to taking off, as a ground delay. Furthermore, the non-approximability
generalizes immediately to the MDS problem, which included SMDS as a special case. Hence, we have the following:

Theorem 12. The NP-hard MDS problem cannot be approximated to within n1-e for e > 0, where n is the number

of aircraft in the problem instance, even if all the delays are to be taken on the ground prior to the departures.

Also note that according to Lemma 10, in an optimal scheduling solution D of the constructed SMDS instance,

each flight is delayed by at most one unit of time, hence spread(D) £ 1. In other words, the non-approximability result
holds even when we are required to maintain equity among the aircraft. Note that in the construction of the SMDS
instance, we have used time-varying sector capacities. It remains open whether the non-approximability result of
Theorems 11, 12 hold if the sector capacities are fixed over time.

IV. Maximum Set of Dependent Aircraft in Precision Arrival Scheduling

A. Problem Formulation
Increasing the arrival throughput at busy airports and the ability of the air transportation system to accommodate

and minimize the impact of unforeseen events such as missed approaches, off-nominal conditions, or accommodating
emergency aircraft into arrival schedules is of increasing importance. NASA’s recent initiative entitled Method to
Enhance Scheduled Arrival Robustness38 (MESAR) is an attempt to investigate the missed-approach problem in the
Terminal Area Precision Scheduling and Spacing (TAPSS) system39. Off-nominal conditions in scheduled arrivals
are defined as conditions that cause the actual landing sequence to be different from what was originally scheduled
and was frozen earlier at the ATC facility. Missed approach is an off-nominal condition in which an aircraft that has
missed or relinquished its originally scheduled slot in the arrival sequence is being inserted back into the arrival stream,
thus altering the originally scheduled landing sequence.

To accommodate this change, the algorithm needs to identify and send for rescheduling a set of aircraft whose
arrival schedules would have to be recomputed. The Maximum Set of Dependent Aircraft (MSDA) problem studied
in this section is motivated by the need to minimize the disturbances on the arrival schedule in order to accommodate
a change caused by off-nominal conditions. The idea is to find the minimum set of aircraft that need to be rescheduled
in order to accommodate the change caused by an off-nominal condition.

Consider a set F of flights flying along their arrival routes to land at their designated runways, as shown in Fig
4(a). The arrival routes can be represented by a directed acyclic graph (DAG) G = (V, E) where E is the set of edges
representing the route segments, and V is the set of vertices representing the beginning or ending of a segment, which
include the intersections (merging points) between two or more route segments, including the meter fixes and arrival
fixes, constituting the sign posts that the arriving aircraft are scheduled to fly through on their way to land. A central
concern in MSDA is the notion of dependence between flights.

Consider a vertex v Î V along the arrival routes, and two aircraft corresponding to flights fi, fj scheduled to fly
through it, such that fj is scheduled to fly through v before fi is. Note that if fi is delayed for some reason, and hence
cannot meet its original scheduled time of flying through v, in the absence of other constraints, fj can still proceed with
its original schedule with no disruption, as far as flying through v is concerned. On the other hand, if fj is delayed and
cannot meet its original schedule, then such a delay would impact fi as well. Thus, we say that fi’s schedule depends
on fj’s or simply that fi depends on fj, and denote it as: fi ® fj. Such dependence is a direct dependence, since both
flights pass through the same vertex along the routing graph. In general, however, two flights that do not fly through
the same vertex in the routing graph (and hence their flight paths do not even intersect) may have dependence, in
which case their dependence would be indirect. Such indirect dependence is generally caused by a chain of direct
dependencies. We say that the dependence relation is transitive. That is, for any three flights fi , fj, fk, if fi depends on
fj (fi ® fj) and fj depends on fk (fj ® fk), then fi depends on fk (fi ® fk). More generally, this can be stated as follows:

Observation 13. Given two flights fi, fj, such that: fi ® fj, there must exist a sequence of flights (fa0, fa1, …, fak) such

that: fi = fa0, fj = fak, and " i Î { 0, 1, 2, …, k-1}: fai ® fai+1.

American Institute of Aeronautics and Astronautics

13

Given a flight f Î F, a subset of flights H Ì F is called a dependent set of f if and only if " h Î H: h ® f. The
maximal dependent set of f, denoted as dep(f) is the set of all flights in F who depend on f (directly or indirectly). In
the MSDA problem, we are given (G, F, T, fd), where G=(V, E) is the arrival routing graph, F is the set of arriving
flights, T is the arrival schedule where T(fi, v) is the time at which flight fi is scheduled to fly through vertex v, and fd
Î F is the target flight that is about to miss its schedule. The objective is to find dep(fd), the maximal subset of flights
in F that depend on fd.

B. An Efficient Algorithm for Solving MSDA
Here, we present a simple and efficient algorithm for solving MSDA, using reachability in directed graphs. First,

we define the dependence graph GD=(VD, ED), where VD = {u1 , u2, …, un} is the set of vertices, with vertex ui
corresponding to flight fi Î {f1, f2, …, fn}. There is an edge in ED from vertex ui to vertex uj if and only if flight fi
depends on flight fj directly. That is, if fi and fj are scheduled to fly through the same node in the routing graph, with
fj scheduled to fly through the node before fi. Figure 5 illustrates the construction of the dependence graph for the
MSDA instance shown in Fig. 4. The direct dependencies corresponding to the set of flights going through each
vertex are shown in Fig. 5(a), and the complete dependence graph is shown in Fig. 5(b).

Figure 5. (a) Identifying direct dependences, (b) Constructing the dependency graph from direct
dependencies.

(a) (b)

Figure 4. (a) Arrival routing graph and the flights, (b) Sequence of flights passing through each node in the
graph.

American Institute of Aeronautics and Astronautics

14

The construction of the dependence graph has several benefits. It allows for a concise representation of the
dependence among flights. In addition, it allows for the application of graph algorithms to discover dependence
characteristics among flights. In particular, we show the following:

Theorem 14. Consider MSDA instance (G, F, T, fd) and let GD be its corresponding dependence graph. Then, for

any pair of aircraft fi, fj Î F, with corresponding vertices vi, vj Î VD, we have fi ® fj if and only if there is a directed
path in GD from vi to vj.

Proof: (IF) Assume there is a direct path Pij = (u0, u1, u2, …, up) in the dependence graph from vi to vj, where u0 =

vi, and up = vj. Consider the vertices (u0, u1, u2, …, up) and the edges (u0, u1), (u1, u2), …, (up-1, up) along this path, and
the corresponding flights fu0, fu1, fu2, …, fup. Note that our construction of the dependence graph guarantees that each of
the edges along Pij corresponds to a direct dependence between the flights corresponding to the two vertices incident
on each edge along the path Pij. That is, we must have fi = fu0 ® fu1 ® fu2 ® . . . ® fuk-1® fuk = fj, which implies fi ® fj.

(ONLY IF): Assume fi ® fj, then according to observation 13, there must exist a sequence Fij = (fi0, fi1, …, fik) of
flights in the MSDA problem instance with fi = fi0 and fj = fik such that for all a Î {0, 1, …, k-1}, flight fia depends
directly on flight fia+1. This means that there exists a direct path in GD from vertex uai to vertex uaj which passes through
the vertices in VD corresponding to the flights in Fij. g

C. An Efficient Algorithm for Solving MSDA
Theorem 14 suggests a simple approach for solving the MSDA. All we have to do is to construct the dependence

graph GD and then find all the vertices in VD reachable from uid, where uid is the vertex in VD corresponding to fd, the
target flight in the MSDA instance. The pseudocode for this algorithm is given in Fig. 6. To analyze the run-time of
the algorithm, we first note that the dominant steps of the algorithm are steps 1 and 2, the creation of the dependence
graph GD = (VD, ED) , and the execution of BreadthFirstSearch on GD.

Construction of GD : The amount of time required to construct the dependence graph GD is proportional to the sum
of its number of vertices and its number of edges, or |VD| + |ED| . Note from the definition of GD that each vertex in
the dependence graph corresponds to a flight in the MSDA problem instance. That is, |VD| = |F|. Additionally, note
that in the worst case, each flight can contribute to at most two direct dependencies for each of the vertices in the
routing graph that it visits. Of course, it is possible (or perhaps even likely) that some of these direct dependencies
involve the same pair of flights, as they may both cross different vertices in the routing graph consecutively. However,
in our current analysis, we can ignore such a possibility as we are only concerned with calculating an upper bound for
the number of edges in the dependence graph. Therefore, the total number of direct dependencies in an MSDA
instance, as well as the number of edges |ED| in its corresponding dependence graph is upper bounded# by |F| ´ |V| . In
other words, we can construct GD in time proportional to |VD| + |ED| , or O (|A| ´ |V|) time.

Execution of BreadthFirstSearch : In its standard implementation, the breadth-first search algorithm has its worst-

case running time proportional to the sum of the number of vertices and the number of edges, and thus this portion of
the algorithm has running time O(|VD|+|ED|) = O(|F| ´ |V|) . Therefore, we have the following result:

Theorem 15. MSDA can be solved in time O(mn) using reachability on the dependence graph, where m is the

number of vertices in the arrival routing graph, and n is the number of flights in the MDS problem instance.

Note that this is not necessarily a tight upper bound. As an example, the dependence graph in Fig. 5(b) has |ED|=16
edges, while the upper bound provided by the expression |F| ´ |V| is 121. See Fig. 7(a) for more examples.

Figure 6. Pseudocode of our algorithm for solving MSDA.

Algorithm ComputeMaximalSetOfDependentAircraft (G, F, T, fd)
BEGIN

1. ud , GD = CreateDependenceGraph (G, F, T, fd)
2. Reach(ud) = BreadthFirstSearch(GD, ud)
3. dep(fd) = {fi Î F | ui Î Reach(ud)}
4. return dep(fd)

END

American Institute of Aeronautics and Astronautics

15

The algorithm of Fig. 6 was implemented in C/C++ and integrated into the simulation environment used in the

real-time human-in-the-loop simulations reported by Jung, et al.38 to minimize the extent of scheduling disturbances
due to tactical updates to the arrival schedule.

A separate MATLAB implementation was also implemented to conduct a simple Monte Carlo study to test the
performance and run time of the algorithm. Three different airports: Dallas Love Field (DAL), Los Angeles
International Airport (LAX), and Phoenix Sky Harbor International Airport (PHX) were modeled, each with a subset
of their corresponding arrival routing graphs. For each airport, the number of arrival aircraft were set to 10, 20, 40,
80, and 160, and for each of these problem sizes, 100 random arrival scenarios were generated, each with a randomly
designated target aircraft. These scenarios were then run through the algorithm shown in Fig 6. The results of these
experiments are summarized in Fig. 7, showing that the runtime of the algorithm is roughly linear in the number of
aircraft in the problem instance, which is what is expected from the analysis presented earlier. The growth rate of the
dependence graph is captured by |ED| shown in the last column of Fig. 7(a), next to its upper bound given by the
expression |F| ́ |V|. The average runtime for different problem sizes for each airport are shown in Fig. 7(b), confirming
the efficiency of the algorithm and its suitability for solving MSDA in under a second for problem sizes up to a couple
of hundred aircraft, making it suitable for real-time application.

An additional twist on the MSDA problem is that, at the moment the query comes, depending on where each arrival
aircraft is situated along its arrival path, some of the aircraft have already passed a handful of the vertices along their
arrival paths. This would allow for pruning the direct dependencies. Only those direct dependencies that lie in the
future need to be taken into account. This allows for speeding up the algorithm, shrinking the size of the dependence
graph. Such pruning was not implemented in the runs summarized in Fig. 7, so the reported run times represent a
conservative view of the scalability of the algorithm.

V. Discussion
A unifying theme and an underlying purpose of presenting results in this work has been to advocate more

extensive use of graph theoretic ideas in the ATM domain, and to demonstrate that graph theory provides a suitable
mathematical abstraction for formulating, reasoning about and solving many technical problems arising in ATM
domain. The abstraction offered by graph theory has several notable advantages: 1) it provides a framework that is
suitable for precise formulation of the problem that is free from unrelated details of the specific application domain,
2) this precise formulation allows for the application of graph-theoretic algorithms and ideas that may have been
historically developed for very different application domains, to be readily applicable to new applications, and thus
allow for cross fertilization and collaboration among researchers specializing in very different subject areas, 3) the
graph theoretic mathematical formulation allows for different generalizations that may potentially lead to new,
unforeseen insights and exciting developments, and 4) the rich and powerful libraries of customizable graph data

(a) (b)
Figure 7. (a) Number of edges in the dependence graph, on average, over 100 randomly generated MSDA
problem instances for DAL, LAX and PHX airports. (b) The average runtime growth rate for the 100
random instances tested for each size for DAL, LAX, and PHX.

American Institute of Aeronautics and Astronautics

16

structures, graph analytics, and the associated algorithms and software toolkits40-43 can be exploited to model, reason
about, and eventually solve diverse problems in modern air transportation.

In addition, linking new (ATM) problems to (graph) problems that have been studied in the past, creates bridges
among islands of knowledge, thus contributing to the expansion of our understanding of the problems and the
relationships among them. Not only does this minimize the potentially wasted efforts to rediscover what is already
known and the proverbial “reinventing the wheel”, it also allows potential future discoveries in related domains to be
more readily applicable to the ATM domain.

Gaining a better understanding of the inherent difficulty and the computational complexity of a problem allows
the research effort to be better guided and focused on areas that are more likely to lead to promising solutions. Some
of the approaches that can be taken include a) studying special classes of the problems that can be solved optimally or
approximately, b) developing heuristics that may target special classes of the problem optimally or approximately,
and then using those solutions as guidelines to develop solutions for practical problem instances, c) using strategies
such as divide-and-conquer or dynamic programming to break the problem into smaller sup-problem instances that
could each be solved optimally or approximately, and then combining the solutions to the sub-problems intelligently
into reasonably good solutions for the original problem. Graph theoretic algorithms and libraries40-43 can provide a
suitable modeling, development, algorithmic framework to realize such strategies.

In formulating and presenting our results for the ASP, SCP, and MDS problems, we have mainly focused on, and
used the terminology specific to, the underlying ATM applications. However, as an example for the 2nd advantage
listed in the previous paragraph, note that due to the flexible nature of the way workload models and sector capacity
may be defined, these problems can find applications that arise in diverse set of technical disciplines dealing with
partitioning of a geometric space that may intersect a set of interacting objects. Depending on the application, the
workload or the capacity models may be defined differently, and the objects may be static or moving entities modeled
as points, line segments, curves, or other geometric shapes located in space-time. Some of these applications include
geometric load balancing for parallel and distributed processing44, geographic partitioning for workload balancing of
municipal services (e.g., power districting45, winter road maintenance46, determination of police patrol coverage
areas47), political redistricting48, and sales force territory design49.

VI. Conclusion
Graph theory is used to study different problems arising in air traffic management. First, using a polynomial

reduction from an NP-complete planar graph partitioning problem, it is shown that the airspace sectorization problem
is NP-hard, in general under several simple workload models, even if the projection of the flight trajectories in the
two-dimensional plane forms a planar graph of maximum vertex-degree six. This result is extended to show that the
seemingly simpler and more practical problem that tries to make local adjustment to a given sectorization (as opposed
to computing one from scratch)—namely the Sector Combining Problem—is also NP-hard. It remains open whether
or not there exist polynomial time approximation algorithms for the airspace sectorization problem and the sector
combining problem. Second, by establishing a polynomial time reduction from maximum independent set in graphs,
it is shown that for any fixed e, the problem of finding a solution to the minimum-delay scheduling problem in traffic
flow management that is guaranteed to be within n1-e of the delay-optimal solution, where n is the number of aircraft
in the problem instance, is NP-hard, even if the delays are all taken on the ground. Furthermore, this non-
approximability result holds when we are required to maintain delay equity among different flights in the problem
instance. The reduction, however, used a time-varying sector capacity schedule. It remains open whether the non-
approximability result holds if the sector capacities are fixed and do not vary over time. Finally, a problem arising in
precision arrival scheduling is formulated and solved using graph reachability. The algorithm was implemented and
tested in a related real-time human-in-the-loop simulation, and experimental evidence is provided to demonstrate the
scalability of the algorithm over randomly generated arrival scenarios for three different airports.

We believe effective exploration and application of graph theoretic ideas, in conjunction with proper use of data
analysis and machine learning techniques could be a very attractive area for further investigation of manned and
autonomous ATM that could help pave the path for more effective automation and automated discovery of optimized
solutions.

American Institute of Aeronautics and Astronautics

17

Appendix

A. Refresher on Graph Theory

A very basic introduction and notation on the theory of graphs is presented below. A more thorough discussion
can be found in standard texts on the subject 3, 4. A graph G is defined as an ordered pair (V, E) of disjoint sets, where
V = {v1, v2, …, v|V| } represents the set of vertices or nodes, and E = {e1, e2, …, e|E|} is the set of edges. Each edge e =
(u, v) Î E is a pair of vertices in V, signifying that the two vertices u and v are connected or joined by the edge. The
graph may be directed or undirected, in which case the edges are directed or undirected, and are represented by ordered
or unordered pairs, respectively. An edge (u, v), which is also represented as uv, is said to join, connect or be incident
on vertices u and v, causing the two vertices to become adjacent to (or neighboring) each other, and each being incident
on the edge uv. For a vertex v Î V, the number of distinct edges incident on v, denoted as dv, is known as its degree.
Given graphs G = (V , E) and G¢ = (V¢, E¢), we say that G¢ is a subgraph of G if and only if V ¢ Í V and E¢ Í E. In
subgraph G¢ = (V¢, E¢), if E¢ includes all edges of G that join two vertices in V¢, then G¢ is the subgraph of G induced
by V ¢.

It is often useful to draw a picture of a graph as its visual representation. In such representation, the vertices are
drawn as distinct labeled points, and the edges are drawn as (potentially curved) lines connecting the points
corresponding to the vertices it joins. If such a drawing can be accomplished on the plane in such a way that the edges
do not intersect, except (potentially) at their endpoints corresponding to the vertices they connect, then the graph is a
plane or planar graph and such a drawing is a planar drawing of the graph. A path P in the graph G = (V , E) is a
non-empty sequence (p1, p2, …, pk) of vertices in V such that " i Î {1, 2, …, k}: (pi, pi+1) Î E. Such a path is said to
connect p1 to pk. A graph is connected if for every pair (u, v) of distinct vertices there is a path connecting u to v. A
cycle is a path wherein the first and the last vertex in the sequence are the same. A graph that does not contain any
cycles is a forest or an acyclic graph. A connected forest is a tree. A tree that visits all the vertices in the graph is
called a spanning tree. Some of these notions are illustrated in Fig. 8.

B. Refresher on the Theory of Computational Complexity
Basic background from the theory of computational complexity is provided here. For a more thorough discussion

of the topic, the reader is referred to standard texts on the subject.5, 6 Computational complexity is concerned with
studying the amount of resources (such as time, space, power) required to solve different computational problems. At
the most basic level, a problem is said to be in P if and only if it can be solved deterministically in polynomial time.
That is a time, polynomial in the size of the problem instance, using a suitable unit of time. A problem is in NP if

Graph: G = (V, E)

Vertices: V = {a, b, c, d, e} |V| = 5

Edges: E = {ab, ac, ad, bd, cd, be, de} |E| = 7

Edge degrees: da = db = 3 ; dd = 4

dc = de = 2

Induced subgraph: G{abcd} = ({ a, b, c, d }, { ab, ad, ac, bd, cd })

A Path: P = (a, b, d, e)

A cycle: C = (a, b, e, d, c, a)

A spanning tree:

𝑎 𝑏

e

𝑑 𝑐

Figure 8. A planar undirected graph G and some related graph concepts.

American Institute of Aeronautics and Astronautics

18

and only if, given a candidate solution c, there is a deterministic algorithm that can verify in polynomial time that c is
in fact a valid solution. A problem is NP-hard if it is at least as hard as the hardest problems in NP. In other words,
a problem P is NP-hard if and only if all problems in NP can be solved in deterministic polynomial time if P can be
solved in deterministic polynomial time. A problem is NP-complete if it is both in NP and is NP-hard. Fig. 9
provides a notional illustration of how the complexity classes P, NP, NP-Complete, and NP-hard are related to
one another.

When expressing the time complexity of an algorithm, we typically express the worst-case run-time of the
algorithm as a function of the size of the problem instance. So, when we say that a problem has a deterministic
polynomial time algorithm, we mean that there is a deterministic algorithm solving the problem whose worst-case
running time is bound by a polynomial function of the input size (given a suitable unit of time). A problem that is
shown to be NP-complete or NP-hard is generally considered intractable. In such cases, one turns to algorithms
that do not guarantee finding the optimal solution. This is because there is widespread agreement (but no known
proof, despite much dedicated effort) that no NP-complete problem can be solved deterministically in polynomial
time. In fact, the biggest open question in computer science and one of the greatest open problems in all of
mathematics 50, 51 is whether the classes of problems that can be solved deterministically in polynomial time (P) and
those that can be solved non-deterministically in polynomial time (NP) are the same. That is, whether P = NP.

The general technique used for showing that a given problem P is NP-hard (NP-complete, respectively) is to use
what is typically called polynomial time reduction, sometimes referred to simply as reduction. That is, to find an NP-
hard (NP-complete, respectively) problem Q, and to show that given an arbitrary instance IQ of Q, it is possible to
create an instance IP of P in (deterministic) polynomial time, such that the solution of Q on instance IQ can be readily
translated into a solution of P on instance IP, and vice versa. In the context of decision problems (problems with
answers YES or NO), this means that the answer to the decision problem Q on instance IQ is YES if and only if the
answer to the decision problem P on instance IP is YES. If we can show this, we have effectively proven that there is
a way to solve an NP-hard (NP-complete, respectively) problem by first translating it into our problem P (using
polynomial amount of effort), and then solving P on the constructed instance IP.

When a problem is shown to be NP-hard, it is generally considered a problem whose optimal solution cannot be
found except in special cases. In practice, several paths may be taken in such circumstances. One strategy is to find
algorithms that do not guarantee to find the optimal solution, but are guaranteed to find solutions that are within
provable bounds of the optimal. Such algorithms are called approximation algorithms52 and are the subject of
extensive studies in the theory of algorithms. Formally, an algorithm is called r-approximate for a minimization
(maximization) problem if the algorithm finds a solution whose cost is at most a factor of r away from the optimal
solution. An optimization problem is in P if it has a combinatorial structure that can be exploited as a foothold to
efficiently home in on an optimal solution. While NP-hard problems do not offer such a foothold, they may still
possess structures that could be exploited to find solutions that are guaranteed not to be too far from the optimal. Yet,

Figure 9. Classes P, NP, NP-complete and NP-hard of problems, and examples of each.

 NP P NP-complete

Satisfiability
Graph 3-coloring
Steiner tree
. . .

Travelling salesman
Halting problem
. . .

NP-hard

Graph reachability
Primality testing
Minimum spanning tree
Sorting
. . .

Integer factoring
Graph isomorphism
. . .

American Institute of Aeronautics and Astronautics

19

there are optimization problems for which it is possible to prove that even the design of an r-approximate algorithm
with small r is impossible, unless P=NP. An example of such a problem is Maximum Independent Set (MIS) in
graphs, that involves finding the largest set of vertices none of which is connected by an edge to any other vertex in
the set. In an influential paper, Håstad37 proved that, for a graph with n vertices, MIS cannot be approximated to
within n1-e for any e > 0, unless P=NP. More thorough discussion of the results on hardness of approximation can
be found in the related literature for probabilistic checking of proofs53, 54 and computational inapproximability55, 56.

Acknowledgments
The authors would like to thank Mr. Todd Farley, Dr. Shon Grabbe, Mr. Saugata Guha, Dr. Sebastian Gutierrez

Nolasco, and Mr. Zachary Wood for valuable discussions and feedback on earlier drafts of this manuscript. A. H.
Farrahi would also like to thank Mr. Todd Farley for his support and encouragements during the course of this research.

References
1Next Generation Air Transportation System, Federal Aviation Administration, U.S. Department of Transportation,

http://www.faa.gov.nextgen/.
2Kopardekar, P. H., Aquilina, R., Edwards, T.A., Crisp, V. K., and Covalowski, J. A., Airspace systems program: Next

generation air transportation system concepts and technology development projects, 2011. FY2011-2015 Project Plan, National
Aeronautical and Space Administration, April 5, 2011.

3Bollobas, B., Modern Graph Theory, Graduate Texts in Mathematics, book 184, corrected ed., Springer, October 2013.
4Distel, G., Graph Theory, Graduate Texts in Mathematics, book 179, 5th ed., Springer, October 2013.
5Garey, M. R., and Johnson, D. S., Computers and Intractability, A Guide to the Theory of NP-Completeness, W.H. Freeman,

January 1979.
6Arora, S., Boaz, B., Computational Complexity: A Modern Approach, 1st ed., Cambridge University Press, April 2009.
7Kopardekar, P., Bilimoria, K., Bridhar, B., “Initial Concepts for Dynamic Airspace Sectorization”, Proc. Of AIAA Aviation

Technology, Integration and Operations Conference (ATIO), Belfast, Northern Ireland, September 18-20, 2007.
8Leiden, K., Kamienski, J., Kopardekar, P., “Initial Implications of Automation on Denamic Airspace Configuration”, Proc.

Of AIAA Aviation Technology, Integration and Operations Conference (ATIO), Belfast, Northern Ireland, September 18-20, 2007.
9Trandac, H., Duong, V., “Optimized Sectorization of Airspace with Constraints”, Proceedings of the 5th Eurocontrol/FAA

ATM R&D Seminar, Budapest, Hungary, June 2003.
10Yousefi, A. Donahue, G.L., “Temporal and Spatial Distribution of Airspace Complexity for New Methodologies in Airspace

Design, Proceedings of the 4th AIAA Aviation Technology, Integration, and Operations Conference (ATIO), Chicago, IL, USA,
September 2004.

11Klein, A. “An Efficient Method for Airspace Analysis and Partitioning Based on Equalized Traffic Mass”, Proceedings of
the 6th USA/Europe Seminar on Air Traffic Management Research and Development, Baltimore, MD, USA, June 2005.

12Basu, A., Mitchell, J.S.B., Sabhnani, G., “Geometric Algorithms for Optimal Airspace Design and Air Traffic Controller
Workload Balancing”, 16th Fall Workshop on Computational Geometry, Northampton, MA, November 2006.

13Kopardekar, P., Bilimoria, K., Sridhar, B., “Initial Concepts for Dynamic Airspace Configuration”, Proceedings of AIAA
Aviation Technology, Integration and Operations Conference, September 2007.

14Martinez, S.A. Martinez, G.B. Chatterji, D. Sun, A.M. Bayen, “A Weighted-Graph Approach for Dynamic Airspace
Configuration”, Proceedings of AIAA Guidance, Navigation and Control, 2007.

15Basu, A., Mitchell, J.S.B., Sabhnani, G., “Geometric Algorithms for Optimal Airspace Design and Air Traffic Controller
Workload Balancing”, Proceedings of SIAM Workshop on Algorithm Engineering and Experiments, pp. 75-89, San Francisco,
CA, January 2008.

16Klein, A., Rodgers, M.D., Kaing, H., “Dynamic FPAs: A New Method for Dynamic Airspace Configuration”, Integrated
Communications Navigation and Surveillance (ICNS), Bethesda, MD, May 2008.

17Xue, M., “Airspace Sector Redesign Based on Voronoi Diagrams”, Proceedings of AIAA Guidance, Navigation, and Control
Conference, Honolulu, HI, August 2008.

18FAA Order JO7210.3V. Facility Operation and Administration, Chapter 17, Section 7. Monitor Alert Parameter, 2007.
19Kopardekar, P., Schwartz, A., Magyarits, S., Rhodes, J. “Airspace Complexity Measurement: An Air Traffic Control

Simulation Analysis”, Proceedings of the 7th USA/Europe R&D Seminar, Barcelona, Spain, July 2007.
20Sridhar, B., Sheth, K.S., Grabbe, S., “Airspace Complexity and its Application in Air Traffic Management”, Proceedings of

the 2nd USA/Europe Air Traffic Management R&D Seminar, Orlando, FL, December 1998.
21Masalonis, A.J., Callaham, M.B., Wanke, C.R., “Dynamic Density and Complexity Metrics for Realtime Traffic Flow

Management”, Proceedings of the 5th USA/Europe Air Traffic Management R&D Seminar, Budapest, Hungary, June 2003.
22Kopardekar, P., Magyarits, S., “Measurement and Prediction of Dynamic Density”, Proceedings of the 5th USA/Europe Air

Traffic Management R&D Seminar, Budapest, Hungary, June 2003.
23Dyer, M.E., Frieze, A.M. “Planar 3DM is NP-Complete”, Journal of Algorithms, Vol. 7 (2), pp. 174-184, 1986.
24Bloem, M., Kopardekar, P., “Combining Airspace Sectors for the Efficient Use of Air Traffic Control Resources”,

Proceedings of AIAA Guidance Navigation and Control Conference, Honolulu, HI, August 2008.

American Institute of Aeronautics and Astronautics

20

25Bloem, M., Gupta, P., Kopardekar, P., “Algorithms for Combining Airspace Sectors”, Air Traffic Control Quarterly, Vol. 17,
No. 3, September 2009.

26Drew, M., “A Method of Optimally Combining Sectors”, Proceedings of AIAA Aviation Technology, Integration and
Operations Conference, Hilton Head, SC, September 2009.

27Vranas, P.B., Bertsimas, D.J., Odoni, A.R., “The Multi-Airport Ground-Holding Problem in Air Traffic Control”, Operations
Research, Vol. 42, No. 2, pp. 249-261, March-April 1994.

28Bertsimas, D.J., Stock-Patterson, S., “The Air Traffic Flow Management Problem with Enroute Capacities”, Operations
Research, Vol. 46, No. 3, pp. 406-422, May-June 1998.

29Bertsimas, D., Lulli, G., Odoni A., “An Integer Optimization Approach to Large-Scale Air Traffic Flow Management”,
Operations Research, Vol. 59, Issue 1, pp. 211-227, 2011.

30Landry, S.J., Farley, T., Hoang, T., “A Distributed Scheduler for Air Traffic Flow Management”, Journal of Scheduling, Vol.
15, Issue 5, pp. 537-551, October 2012.

31Tandale, M.D., Wiraatmadja, S., Vaddi,S., Rios, J.L. “Massively Parallel Optimal Solution to the Nationwide Traffic Flow
Management Problem”, Proceedings of the AIAA Aviation Technology, Integration, and Operations Conference, Los Angeles, CA,
August 12-14, 2013.

32Barnhart, C., Bertsimas, D., Caramanis, C., Fearing, D., “Equitable and Efficient Coordination in Traffic Flow Management”,
Transportation Science, Vol. 46, No. 2, pp. 262-280, May 2012.

33Zhang, Y., Su, R., Li, Q., Cassandras, C.G., Xie, L., “Distributed Flight Routing and Scheduling for Air Traffic Flow
Management”, IEEE Transactions on Intelligent Transportation Systems, Early Access Article, Vol. PP, No. 99, pp.1-12, URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7855790&isnumber=4358928, [cited 30 April, 2017].

34Johnson, D.S., “Approximation Algorithms for Combinatorial Problems”, Journal of Computer and System Sciences, Vol. 9,
Issue 3, pp. 256-278, Elsevier, December 1974.

35Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M., “An Analysis of Several Heuristics for the Traveling Salesman Problem”,
SIAM Journal on Computing, Vol. 6, Issue 3, pp. 568-581, 1977.

36Arora, S., “Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and Other Geometric Problems”,
Journal of the ACM, Vol. 45, No. 5, pp. 753-782, September 1998.

37Håstad, J., “Clique is Hard to Approximate within n1-e ”, Acta Mathematica, Vol. 182, pp. 105-142, 1999.
38Jung, J., Verma, S.A., Zelinski, S.J., Kozon, T.E., Sturre, L., “Assessing Resilience of Scheduled Performance-Based

Navigation Arrival Operations”, Eleventh USA/Europe Air Traffic Management Research and Development Seminar (ATM2015),
Lisbon Portugal, Jun 23-26, 2015.

39Swenson, H., Jung, J., Thipphavong, J., Chen, L., Martin, L., Nguyen, J., “Development and Evaluation of the Terminal
Precision Scheduling and Spacing System for Off-Nominal Condition Operations”, 31st IEEE/AIAA Digital Avionics Systems
Conference (DASC), pp. 1-18, Williamsburg, VA, October 14-18, 2012.

40Apache Giraph, URL: http://giraph.apache.org [cited 30 April, 2017].
41Apache TinkerPopTM, URL: http://tinkerpop.apache.org [cited 30 April 2017].
42Python NetworkX, URL: https://networkx.github.io [cited 30 April 2017].
43Siek, J.G., Lee, L.-Q., Boost Graph Library, User Guide and Reference Manual, Addison-Wesley Professional, December

30, 2001.
44Kim, J., Papaefthymious, M, Tayyab, A., “An Algorithm for Geometric Load Balancing with Two Constraints”, 18th IEEE

International Symposium on Parallel and Distributed Processing, pp. 40-48, April, 26-30, 2004.
45Bergey, P.K., Ragsdale, C., T., Hoskote, M., ”A Simulated Annealing Genetic Algorithm for the Electric Power Districting

Problem”, Annals of Operations Research, Vol. 121, Issue 1, pp. 33-55, July 2003.
46Perreira, N., Langevina, A., Campbell, J.F., “The Sector Design and Assignment Problem for Snow Disposal Operations”,

European Journal of Operations Research, Elsevier, Vol. 189, No. 2, pp. 508-525, 2008.
47Curtin, K.M., Hatslett-McCall, K.L., Qui, F., “Determining Optimal Police Patrol Areas with Maximal Covering and Backup

Covering Location Models”, Networks and Spatial Economics, Springer, Vol. 10, Issue 1, pp. 125-145, March 2010.
48Altman, M., “The Computational Complexity of Automated Redistricting: Is Automation the Answer?”, Rutgers Computer

and Law Technology Journal, Vol. 23, No. 1, pp. 81-142, 1997.
49Howick, R.S., Pidd, M., “Sales Force Deployment Models”, European Journal of Operations Research, Elsevier, Vol. 48.

No. 3, pp. 295-310, October 1990.
50Devlin, K. J., The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time, Basic Books,

October 2003.
51Jaffe, A., Wiles, A., Carlson J., The Millennium Prize Problems, American Mathematical Society, June 2006.
52Vazirani, V., Approximation Algorithms, Springer, March 2004.
53Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M., “Proof Verification and the Hardness of Approximation

Problems”, Journal of the ACM, Vol. 45, Issue 3, pp. 501-555, May 1998.
54Dinur, I., “The PCP Theorem by Gap Amplification”, Journal of the ACM, Vol. 54, Issue 3, Article 12, June 2007.
55Trevisan, L., “Inapproximability of Combinatorial Optimization Problems”, Electronic Colloquium on Computational

Complexity, Rev. 1, Report No. 65, February 22, 2010. URL: https://eccc.weizmann.ac.il/report/2004/065 [cited 16, June 2017].
56Khot, S., “Inapproximability of NP-Complete Problems”, Proceedings of the International Congress of Mathematicians,

Volume 1, pp. 711-728, Seoul, S., Korea, August 13-21, 2014.

